Two-Link Planar Robotic Arm

The two-link planar robotic arm is a frictionless, constrained mechanical system. The system consists of two links attached to each other through a joint, such that one end of the first link is held fixed, while the trajectory at the end of the second link is specified. The following figure shows a schematic of the system.

Composite Motion

- The motion of this simple arm is comprised of two linked motions: Rotary motion of first arm l_1 around a fixed joint Rotary motion of second arm l_2 around the joint at the free end of arm l_1

θ_1

 ${eta}_1$ is angular measure of motion of first arm l_1 around an anchored joint.

θ2

 $artheta_2$ is angular measure of motion of second arm l $_2$ around the linked joint.

Note: the Linked Joint is not fixed and moves along an arc of a circle aroud the anchored joint.

 $heta_1(t)$ stands for angle $heta_1$ as function of time i.e. given a value time t, $\Theta_1(t)$ is the value for angle Θ_1 at time t.

Example

 $l_1 = 1$ $l_2 = 1$

Initial configuration: t = 0

```
\Theta_1(0) = 60., \quad \Theta_2(0) = 240.
```


Blue curve is the constraint imposed on second arm's path. Red curve is **always** an arc of radius $l_1=1$ for first arm's path.

At later time: t=0.3 $\Theta_1(0.3) = 37.0904$, $\Theta_2(0.3) = 244.582$

Composite Two Rotations

The motion of the entire arm is actually Two rotations!

 Θ_1 and Θ_2 actually specify a particular configuration of the two arms. In other words if we know Θ_1 and Θ_2 then when know were each arm is.