Distance Function

This is obtained using the Pythagorean Theorem: $a^2{}_{\rm +}b^2{}_{\rm =}c^2$

Where a and b are the length of the two legs of a right triangle and c is the length of the Hypotenuse. Conside a right triangle in the first quadrant of the Cartesian Plane: Let $P_{1=} (x_1, y_1), P_{2=} (x_2, y_1), P_{3=} (x_2, y_2)$

Y (x_{2},y_{2}) (x_{1},y_{1}) (x_{1},y_{1}) (x_{2},y_{1}) (x_{2},y_{1}) (x_{2},y_{1})

What is the length of the side a? y_2-y_1 What is the length of the side b? x_2-x_1 Then $c^2=(x_2-x_1)^2+(y_2-y_1)^2$ and

 $Column \left[c = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \right]$

