### Average Rate of Change & Secant Line

Average Rate of Change is a single number indicating a rough amount computed for some measurablte entity that changes or varies with time.

Average Rate of Change =  $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$ 

A **Secant Line**, also simply called a secant, is a line passing through

two points of a curve. Therefore **slope of a secant line** is the same as the Average Rate of Change.

while  ${f f}({\sf x})$  indicates horizontal axis value for secant line computes as follows:

A= 
$$\frac{f(x)-f(x_1)}{x-x_1}$$
  $\Longrightarrow$  A  $(x-x_1)=f$ 

$$A = \frac{f(x) - f(x_1)}{x - x_1} \Longrightarrow A(x - x_1) = f(x) - f(x_1) \Longrightarrow A(x - x_1) + f(x_1) = f(x)$$

$$x = Ax + (f(x_1) - Ax_1)$$

# $f(x) = Ax + (f(x_1) - Ax_1)$

## Example 1.

- $r = -\frac{27 \text{ m}^2}{10} \frac{13}{5}$  average between -4, 2

-2

-40

-60

r could be temperature of a cup of tea and m time.

r could be gasoline amount and m distance traveled.

 $\Delta r = r(2) - r(-4) = -\frac{27(2)^2}{10} - \frac{13}{5} - \left(-\frac{27}{10}(-4)^2 - \frac{13}{5}\right) = \frac{162}{5}$ 

**Secant Slope**=Tan  $(\theta) = \frac{r(2) - r(-4)}{2 - (-4)} = \frac{27}{5}$ 

r could be speed of a car and m time.

Average Rate of Change= $A = \frac{27}{5}$ 

Secant Line:  $r = \frac{27}{5} m + \left(-\frac{121}{5}\right)$ 

Equation for Secant Line, if **A** indicates Average Rate of Change

Secant